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ABSTRACT 

Let R be a mfital associative ring and ~, ~ two classes of left R-modules. 

In [St3] the notion of a (~, ~)-cotorsion pair was introduced. In analogy 

to classical cotorsion pairs, a pair (•, W) of subclasses ~2 C_ ~ and l,V C_ 

is called a (gO, ~I])-cotorsion pair if it is maximal with respect to the classes 

~,~I] and the condition Exth(V, W) = 0 for all V E V and W E W. In 

this paper we study (q~|, ~)-cotorsion pairs where R = Z and q~ is the class 
of all torsion-free abelian groups and q~ is the class of all torsion abelian 

groups. A complete characterization is obtained assuming V = L. For 

example, it is shown that every (~[, q~)-cotorsion pair is singly cogenerated 
under V -- L. 

In t roduc t ion  

Let R be any unital and associative ring and let gJ and ~ be two classes of 

left R-modules. In [St3] the author introduced the notion of (~J, ~lJ)-cotorsion 

pairs which is closely related to tile well-known notion of cotorsion pairs (for 

abelian groups) which goes back to Salce [Sa]. In analogy to Dickson's notion 

of a torsion theory, a cotorsion theory  or cotorsion pair is a pair (A,/3) of 

classes of abelian groups which is maximal with respect to the property that 

Ext,(A, B) = 0 for all A E A and B E /3. Cotorsion pairs form a complete 

lattice which has a complicated structure as was shown in [GSShWa]. In the 

obvious way this notion can be extended to any class of modules over any kind 

of ring. Since the late 1970's cotorsion pairs (over arbitrary rings) have been 
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studied extensively by several mathematicians and recently led to the solution 

of the flat cover conjecture (see [Xu]), a major problem in module theory (see 

Bican-E1 Bashir-Enochs [BiBaEn]). Cotorsion pairs also play an important 

role in the theory of tilting and cotilting modules (see [Bazl], [Baz2], [Baz3], 

[BazEkTr], [BazSa], [EkShTr], [Trl], [Tr2] and the references given there). In 

this context it has been of particular interest whether or not a given cotorsion 

pair is complete, i.e. has enough injectives and projectives. 

In analogy to cotorsion pairs a (~, ~)-cotorsion pair is defined as a pair 

(P, }4/) of classes P C_ ~ and 142 C_ ~ which is maximal with respect to 

the condition that Ext~(V,W) = 0 for all V E ~ and W E 14] but only 

related to the two classes ~ and ~ .  This is a refinement of the classical 

notion of a cotorsion pair, i.e. (F, 142) is a cotorsion pair if and only if it is a 

(R-Mod, R-Mod)-cotorsion pair. 

In this paper we study the case when R = Z and ~ = ~f, ~ = ~: where 

Tf is the class of all torsion-free abelian groups and ~ is the class of all torsion 

abelian groups. A (~f, ~:)-cotorsion pair is called a Baer cotorsion pair since the 

motivation comes from an old problem due to R. Baer. In [Bali Baer asked to 

characterize all pairs (G, T) of torsion-free abelian groups G and torsion abelian 

groups T satisfying Ext,(G, T) = 0. In particular cases the problem has been 

solved for torsion-free groups of size at most 1% or by requiring Ext,(G, T) = 0 

for a proper class of T's (see e.g. [Bal], [Gr], and also [EkFuSh]). Finally, the 

author solved it completely assuming V = L in [St2]. Using these results we 

give a complete characterization of the (~f, ~)-cotorsion pairs assuming Goedel's 

constructible universe V = L and hence solve Baer's problem again but from 

the viewpoint of Baer cotorsion pairs assuming the additional set-theoretic 

assumption V = L. 

We assume that the reader is familiar with basic homological algebra and the 

theory of abelian groups (see [EkMe] and [Ful], [Fu2] for further details). In 

particular, we assume knowledge of the concept of height sequences (of elements 

x C G inside the abelian group G), types (isomorphism classes of rational groups 

R C_ Q), and the lattice of types. Since there is no danger of confusion we shall 

always identify types with a rational group in the isomorphism class (see [Ma] 
for details on types). For filrther details on cotorsion pairs we refer the reader 

to the two books by Eklof-Mekler [EkMe] and G5bel-Trlifaj [GSTr3]. 

The results in this paper also appear in the author's Habilitationsschrift [St4]. 
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1. ( ~ , ~ J ) - c o t o r s i o n  pa i rs  

In this section we recall some definitions and results from [St3]. Throughout let 

R be any unital associative ring and ~J, ~J two classes of left R-modules. The 

following definition is a refinement of the notion of a classical cotorsion pair (see 

[St3]). 

Definition 1.1: Let Y C_ ~ be a subclass of ~3 and let W C ~ be a subclass 

of ~lJ. The pair (Y, W) is called a (~J, ~J ) -co to r s ion  pa i r  if it satisfies the 

following three conditions: 

(i) Ext , (V,  W) = 0 for all V E • and W E W; 

(ii) i f X  E ~J and Ext~(V,X)  = 0 for every V E P then X E W; 

(iii) if Y E ~3 and Ext]~(Y, W) = 0 for every W E W then Y E )d. 

The class ~ is called the ~J-cotors ion-f ree  class and the class W is called the 

~ - c o t o r s i o n  class of the (~J, ~J)-cotorsion pair (~, W). 

In other words, the pair (1. ~, W) is a (~J, ~lJ)-cotorsion pair if it is maximal 

with respect to the condition Ext , (V,  W) = 0 for all V E 1; and W E W but  

only related to the two classes ~J and ~lJ. Clearly, a classical cotorsion pair (as 

defined in [Sa D is nothing else but a (R-Mod,R-Mod)-cotorsion pair. Moreover, 

if the pair (~J, ~J) forms a torsion theory, i.e. if HomR(W, V) = 0 for all W E 

and V E ~3 (see Dickson [Di]), then a (~,  ~J)-cotorsion pair was called a t o r s i o n  

co to r s ion  pa i r  in [St3]. 

As for cotorsion pairs we may define the (~,~lJ)-cotorsion pair generated 

(cogenerated) by a class of R-modules. To do so, we need a replacement of the 
perpendicular operations. Recall that,  if 7" is a class of R-modules, then 

T • =- { X  E R-Mod: Ext , (T ,  X)  = 0 for all T E 7-} 

and dually 

i T  = { X  E R-Mod: E x t , ( X ,  T) = 0 for all T E 7-}. 

In analogy we let T C ~ ( T )  = 7 -• M ~J and 5vC~(T) = I T  M ~3. 

Definition 1.2: Let T be a class of R-modules. We call 

(fc  (7-), 7-c  (:rc  (T))) 

the (~3, ~J)-cotorsion pair g e n e r a t e d  by 7" and dually 

(fC (TC  (T)), (T)) 
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the (~3, ~lCJ)-cotorsion pair c o g e n e r a t e d  by T. If T consists of a single R- 
module then we speak of the s ingly  g e n e r a t e d  or s ingly  c o g e n e r a t e d  (~J, glJ)- 

cotorsion pair. 

It is easy to check that the (~, ~IJ)-cotorsion pairs (co) generated by a class 

T are indeed cotorsion pairs (see also [St3]). 

The class of all (~J, ~lJ)-cotorsion pairs is partially ordered by the reverse in- 

clusion in the first component: ()2, W) _< (l) I, W') if and only if 12 _D 121 or, equiv- 

alently, 142 _C W'. Moreover, the (~,  ~J)-cotorsion pairs form a complete lattice: 

Given a sequence of (~,  ~lJ)-cotorsion pairs (()2~, Wi) : i E I), the supremum is 

given by (r~ie~Fi, Tc~(niEl]2i)) and the infimum by (.~c~(niei~/vi), niEi~?i). 
Regarding the connection between cotorsion pairs and (~, ~13)-cotorsion pairs 

the following was shown in [St3]. 

LEMMA 1.3: Let O),W) be a (~,ffg)-cotorsion pair. If  (A,B) is either the 

cotorsion pair generated by W or the eotorsion pair cogenerated by V, then 

(]?,)A?) = (.A M ~ , / 3 n  J~). 

Thus every (~J, ~IJ)-cotorsion pair (l), W) is naturally induced by a cotorsion 

pair (.4,/3) in the sense that (12, W) = (.4 n gJ, B n ~J). 
Finally, a list of problems was given in [St3] which should be solved for a 

particular triple (R, ~J, ~J), in order to get insight in the structure of the (if?, gIJ)- 

cotorsion pairs. A module X E 12 n W is called a sp l i t t e r  of the (~J, glg)- 
cotorsion pair ()2, W). Moreover, the (~J, ~lJ)-cotorsion pair (12, W) has e n o u g h  

in jec t lves  if, for every M E ~ ,  there exists an exact sequence 

O-+ M ~ W ~ V--+ O 

with V E )2 and W E W. Such a short exact sequence is called a specia l  W- 

p r e e n v e l o p e  of M. Note that for any hereditary ring R, the module V E ))AW 

is a splitter. Dually, we say that 02, l/Y) has e n o u g h  p ro jec t ives  if, for every 

M E glJ, there exists an exact sequence 

O-+ W--+ V - ~  M - ~  O 

with V E )) and W E 142. Such a short exact sequence is called a special  

) ) -precover  of M and again for hereditary rings, the module W E 1; n 14; is a 

splitter of the (~,  glJ)-cotorsion pair (12,)4;). 

LIST OF PROBLEMS 1.4: Let R be any reasonable ring and fB, f~J be two classes 

of R-modules which have nice closure properties. Solve the following problems: 
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(i) What are the splitters of a (~U, ~)-cotorsion pair? 

(ii) Does a (fO,~)-cotorsion pair have enough injectives or projectives 
respectively? 

(iii) Characterize the singly generated or singly cogenerated (~U, ~)-cotorsion 
pairs respectively. 

(iv) Determine the lattice of all (~U, ~)-cotorsion pairs; what is the minimal 
and maximal element? 

(v) Can you develop some kind of approximation theory? 

(vi) What information does a (~U, ~)-cotorsion pair (V,)4;) give about the 

cotorsion pair generated by W or cogenerated by V, respectively? 

2. The  Baer  cotors ion pairs 

In this section we shall consider a particular torsion cotorsion pair which was 

motivated by a problem due to R. Baer who asked in [Bal] for a characterization 

of all pairs (G, T) of torsion-free abelian groups G and torsion abelian groups 

T such that Ext,(G, T) = 0. In the sequel all groups will be abelian, E x t ( - , - )  

denotes Extl(  - ,  - )  and cotorsion pair means (P.lb, 91b)-cotorsion pair where 91b 

is the class of all abelian groups. Recall that ~f is the class of all torsion- 

free abelian groups and �9 the class of all torsion abelian groups. Trivially, the 

pair (~, ~f) forms a torsion theory and hence we are interested in the torsion 

cotorsion pairs associated to this torsion theory, i.e. the (~[, ~)-cotorsion pairs. 

Definition 2.1: A (~f,~)-cotorsion pair is called a Baer  cotors ion  pair. 

We shall give answers to most of the problems from the List of Problems 

1.4. It is immediate to see that for every Baer cotorsion pair (~, T) the class 

contains the class ~ of all free abelian groups and the class T contains all 

torsion cotorsion abelian groups, i.e. ~ A ( C_ T, where E is the class of all 

cotorsion groups, i.e. abelian groups G such that Ext(Q, G) = 0 or equivalently 

Ext(H, G) = 0 for all H E ~f. Moreover, G is closed under taking isomorphic 

copies, subgroups, arbitrary direct sums and extensions while T is closed under 

taking isomorphic copies, epimorphic images, extensions but not under direct 

products since a product of torsion groups need not be torsion. Furthermore, 

note that, in contrast to the classical cotorsion pairs, a Baer cotorsion pair 

never has enough injectives nor projectives and obviously does not contain any 

splitters except for the trivial group. Hence problems (i), (ii) and (v) of the List 

of Problems 1.4 are not of interest in this section. 
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Using Griffith's solution to the Baer splitting problem (see [Gr]) we have the 

following theorem. 

TIIEOREM 2.2: The Baer cotorsion pairs form a complete lattice with maximal 

element (~, ~) and minimal element ( ~ ,  ~ M T). 

Proof." By [St3, Theorem 1.6] the Baer cotorsion pairs form a complete lattice 

and clearly (i~, T) and (~f, Is M T) are maximal and minimal respectively. Thus 

all we have to show is that (i~, cs is a Baer cotorsion pair. But this is immediate 

since [Gr] shows that an abelian group G is free if and only if Ext(G, T) = 0 for 

all torsion groups T. II 

Before we continue we would like to give some examples of Baer cotorsion 

pairs different from the maximal and the minimal ones. A helpful result was 

proved in [StWa] by Wallutis and the author. 

PROPOSITION 2.3: Let R be a rational group with X/t(1) = (rp)pEll and let 

T = ~pEn  Tp be a reduced torsion group with p-components Tp. 

Then Ext(R, T) = 0 if and only i f  the following conditions are satisfied: 

(i) Tp is bolmded for all p such that rp = oo; 

(ii) Tp = 0 for ahnost a]1 p sudl that rp ~ O. 

EXAMPLE 2.4: Let 7/ = UpEtl ~p be the class of all p-groups for all primes p. 

Then the Baer cotorsion pair generated by 7-[ is different from the maxima] and 

minimal Baer cotorsion pair. 

Proof  Let (G, T) be the Baer cotorsion pair generated by 7/. By Proposition 

2.3, the rational group R = (1/p : p C FI) is contained in G and thus (G, T) is 

different from the maximal Baer cotorsion pair. On the other hand, the rational 

group R = (1/p" : n E w) is not contained in G for every prime p, by Proposition 

2.3, and therefore (jC, T) is also different from the minimal Baer cotorsion pair. 
| 

EXAMPLE 2.5: Let 7/~ be the class of all groups T E 7/ such that IT[ _< A 

for some infinite cardinal A. Then the Baer cotorsion pair generated by 7/x is 

generated by a set of torsion groups but is not singly generated. 

Proof  Let (•,T) be the Baer cotorsion pair generated by 7/A. Obviously, 

(G, 7-) is generated by a set since 7/A is a set. As in Example 2.4 the rational 

group R = (1/p : p E l-I) is contained in G. Assume that (G,T) is generated 
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by a single torsion group T. Then T must have infinitely many non-trivial 

p-components which implies R ~ ~ by Proposition 2.3 1 a contradiction. I 

EXAMPLE 2.6: Let P be a proper subset of the natural primes II. If  ~.p  = 

(~peP E.p is the class of all groups T E T. with trivial p-components for p r P, 

then the Baer cotorsion pair generated by T.p is different from the maximal and 

minima/Baer cotorsion pairs. 

Proof." Follows as in the proof of Example 2.4 using the appropriate rational 

groups. I 

We now clarify the connection between cotorsion pairs and Baer cotorsion 

pairs. The first lemma is a consequence of Lemma 1.3. 

LEMMA 2.7: Let ( ~ , T) be a Baer cotorsion pair. If (.,4, B) is either the cotorsion 

pair generated by T or the cotorsion pair cogenerated by G, then (G, T) = 

(A n B n = (A, S n 

Proof: Lemma 1.3 shows that (~, T) = (Afl  Ef, B N E) holds. The second 

equality now follows since T contains all torsion cotorsion groups and thus, in 

either case, the class A must consist of torsion-free abelian groups only. I 

The above Lemma 2.7 shows that every Baer cotorsion pair (~, T) is induced 

by a cotorsion pair (A, B) in the sense that (G, T) = (ANTI, BnE).  However, it 

is obvious that for a cotorsion pair (A, B) the pair (.4 n E~,/3 n E) is not always 

a Baer cotorsion pair since B does not necessarily contain all torsion cotorsion 

groups. For the next result we need to recall two results due to Salce [Sa] and 

Kulikov [Kul]. 

LEMMA 2.8: Let (A, B) be a cotorsion pair. Then the following are equivalent: 

(i) A contains a non-triviM p-group; 

(ii) J[ contains all p-groups; 

(iii) every group in B is p-divisible. 

For an abelian group X let t (X) denote its torsion subgroup. 

LEMMA 2.9: Let X , Y  be two abelian groups. Then Ext(X,Y) = 0 if and only 

if Ext(t(X), Y) = 0 and Ext (X/ t (X) ,  Y) = O. 

In view of Lemma 2.8 and Lemma 2.9 it is reasonable to define 7r(M) as 

7r(A) = {p E H: Z(p) E A} for a class A of abelian groups and to put zr(X) = 

{p E H: tp(X) # 0} for an abelian group X. Note that 

= {p e n: z(p) c x} ,  



36 L. STRUNGMANN Isr. J. Math. 

hence this definition is in accordance with the definition of r (A)  for classes ,4 

of abelian groups. 

THEOREM 2.10: Let (A,B) be a cotorsion pair and let 6 = A M q[[. Then 

7c~(6) = (t~ n ~) + (r n ~). 

Proof: Let P = ~(A). We first claim that Q(P) E A. By Lemma 2.8 it follows 

that  Z(p ~)  E .A for every p E P. Thus ~ P ) / z  = ~ p e p Z ( p  ~) E A. Since also 

Z E A we conclude that  Q(P) E ,4. 

Now assume that  T E �9 satisfies Ext(G, T) = 0 for all G E 6. We have to 

prove that  T E (B N ~) + (~ M ~). Therefore we write T in the form T = T' @ T" 

with T ~ = ~pCp TB and T" = ~pEP Tp. AS shown above we have Q(P) E A 

and hence ~)(P) E 6, thus Ex t (~  (P) , T) = 0. Consequently, Ex t (~  (p) , T") = 0 

and Proposition 2.3 implies that  T" is the direct sum of a bounded group and 

a divisible torsion group. Thus T"  E (~ M ~). 

It remains to prove that  T ~ E (B M ~:). Let M E .4; then Lemma 2.9 implies 

that  M/t (M)  C A  N ~[ and hence Ext(M/t (M),T ' )  = 0 by assumption. Let 

P '  = ~(M) = {p ~ H: t(M)p ~ 0}. Then Z(p) E A for all p E P '  and therefore 

P~ C_ P. Again Lemma 2.8 implies that  T ~ is p-divisible for all p E P and thus 

Ext( t (M),  T') = 0. This shows that  Ext(M, T') = 0 and so T' E (/3M ~). Hence 

we have T = T' �9 T"  E (B M E) + (~ M ~), as required. I 

However, even though Theorem 2.10 may suggest that  a cotorsion pair (A, B) 

always induces a Baer cotorsion pair, namely (A M ~[, (/~ M ~') + (~ M ~)), the 

next proposition shows that  this is, in general, not the case. Nevertheless, if 

(~4, B) is a cotorsion pair between the minimal cotorsion pair and the cotorsion 

pair (~f, ~) then clearly (A, B) induces the minimal Baer cotorsion pair. 

For the next proposition we need to recall the quasi-reduced type of a ratio- 

nal group R C ~ from [StWa]. A type R is called quas i - r educed  if Xpn(1) E 

{0,1, oo} for all p E H. Clearly, there exists a unique quasi-reduced type 

type qr ( R ) (= Rqr C ~) for every type (rational group) R by putting X tp ype'~'' ( R) (1) 
R xtpYpeq~'(R) = 1 if 0 < Xp (1) < oo and (1) = Xpn(1) otherwise. 

PROPOSITION 2.11 : Let R be a rational gro~lp which is not idempotent and let 
(.4, B) be the cotorsion pair singly cogenerated by R. Then the induced pair 

(A N E.[, (B M T) + (r M ~)) is not a Baer cotorsion pair. 

Proos Since R is not idempotent there exists a rational group S which is not 

idempotent such that  type(S) > type(R) but typeqr(S) = typeqr(R). Thus 

TC~z(S) = TC~(R) = B M ~ = (B M ~) + (~ M ~) by Theorem 2.10. However, 
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by [GSShWa, Theorem 1.11] there exists an abelian group M E R a- such that 

Ext(S, M) ~ 0. Therefore S • A M X[ but S E :FCez~(TC~(R)), showing that 

the induced pair (.4 M 57[, (/3 M ~7) + ((g t-I ~)) is not a Baer cotorsion pair. I 

In contrast to the above, for cotorsion pairs generated by torsion groups we 

have 

THEOREM 2.12: If (A,/3) is a cotorsion pair generated by a class of torsion 
groups, then (.4 ~ 57~, (/3 M 5s + (~ M ~) ) is a Baer cotorsion pair. 

Proof'. Let (9 be a class of torsion groups generating (A, t3); then O C_/3 g~ 57. 

Thus, if G is a torsion-free abelian group satisfying Ext(G, T) = 0 for all T E O, 

then G E A follows and hence G E AM57[. This shows that (AM~[,BM57+EM57) 

is a Baer cotorsion pair. I 

Finally, we have the following result which describes, in general, the connec- 

tion between cotorsion pairs and Baer cotorsion pairs. 

THEOREM 2.13: Let (A,/3) be a cotorsion pair and let T = (/3 M ~) + (~ M 57). 
Then (~-C~f (T), T) is a Baer cotorsion pair. 

Proof: Follows immediately from Theorem 2.10. I 

The pair (TC~f (T), T) is called the Baer cotorsion pair naturally induced by 

(A,/3) (see also [St3]). 

3. Singly cogenerated Baer cotorsion pairs 

In this section we restrict our attention to Baer cotorsion pairs which are singly 

cogenerated by a torsion-free abelian group G. Hence we mainly focus on deter- 

mining the structure of the class TCez(G) which, of course, gives full information 

about (YC~:f(TC,z(G)), TC,z(G)). This is closely related to Baer's Problem, the 

characterization of all pairs (G, T) of torsion-free abelian groups G and torsion 

abelian groups T satisfying Ext(G, T) = 0. Since a full description of TC~(G) 
is available for countable groups in ZFC (see [StWa]) and for arbitrary groups 

under V = L (see [St2]) the aim of this section is to put these results into the 

global context of Baer cotorsion pairs. In particular, it turns out that in V = L 

every Baer cotorsion pair is singly cogenerated by a torsion-fl'ee abelian group 

of size N1. 

If TC~(G) is maximal, i.e. TC~(G) = ~: = TC~(Z), then G has to be free 

by Griffith's solution of the Baer problem [Gr]. On the other hand, however, if 



38 L. STRUNGMANN Isr. J. Math. 

TC~(G) = TC~(Q) is minimal then G need not to be divisible, as the following 

example shows: 

EXAMPLE 3.1: Let G = P = line,, Z be the Baer-Specker group. Obviously, 
P is not divisible; in fact, P is homogeneous of type Z. 

However, by [G67~:, Lemma 1.3], P contains a subgroup ~)~ such that TC~)~)  
-- TC~'(Q) and thus TC~z(P) = TC~(Q) since Q2- c_ P• c_ ~ .  | 

This example indicates that  rather complicated groups may, in view of Baer 

cotorsion pairs, be replaced by a simpler group like Q. 

We now consider B ~ r  cotorsion pairs singly cogenerated by a completely de- 

composable group C. Therefore we call a Baer cotorsion pair which is singly 

cogenerated by a completely decomposable group C (rational group R) a com- 

p l e t e ly  d e c o m p o s a b l e  B a e r  co tors ion  pair  ( ra t iona l  Bae r  co tors ion  

pair) .  

Definition 3.2: Let R be a rational group and xqr(t~) = (rp)pEri. Then f i r  is 

the class of all reduced torsion groups T = ~perI Tp satisfying the following two 

conditions: 

(i) Tp is bounded for all p such that r v = oc; 

(ii) T v = 0 for ahnost all p such that  rp # 0. 

For a rational group R let (~R, 7)~) be the rational Baer cotorsion pair singly 

cogenerated by R. 

TtIEOREM 3.3: Let R be a rational group. Then the rational Baer cotorsion 

pairs (GR, TR) and (6R~,., TRy,.) coincide and we have 

TC~(R) = 7-C~(Ir = ~R �9 (~  n ~). 

Moreover, for two rational groups R and S we have (~s, Ts) <_ (G~r 
(or equivalently TC~r(R) C_ TC~(S)) if  and only if typeq~(R) >_ typeq~(S). 

Proof." The proof is straightforward using Proposition 2.3 and the fact that  

divisible (torsion) groups T always satisfy Ext(R,T)  -- 0. See also [StWa]. 
| 

As an irmnediate consequence of Theorem 3.3 we have that 

T C ~ ( R )  = TC~(R') 

for rational groups R, R' if and only if typeq~(R) = typeq~(R'). So, by what we 

have said before, rational Baer cotorsion pairs can be the same even for incom- 

parable rational groups. This contrasts the analogous result from [GSShWa] for 

cotorsion pairs. 
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Before we continue note that tile characterization of rational Baer cotorsion 

pairs immediately induces a characterization of completely decomposable Baer 

cotorsion pairs since TC~(C) = Ni~i TC~(Ri) for completely decomposable 

groups C = (~ieI Ri with Ri C Q, although it is not very explicit. 

The key stone for characterizing singly cogenerated Baer cotorsion pairs in 

general is the following result from [StWa, Theorem 3.6]. 

THEOREM 3.4: Let T be a class of torsion groups. Then T = TC~(C) for some 

completely decomposable group C if and only if the following conditions are 

satisfied: 

(i) T contains all torsion cotorsion groups; 

(ii) T is closed under epimorphic images; 

(iii) ( ~ c , J  Z (pn) E T if and only if T contaJns all p-groups for ali primes p; 

(iv) if  P is an infinite set of primes, then (~p~pZ(p) E T if and only if 

~ p ~ p  T v E T for all p-groups T v E T; 

(v) if P is an infinite set of primes such that ~pEP Z(p) ff T then there exists 

an infinite subset P' of P such that ~DpEX Z(p) ~_ T for all infinite X c_ P'. 

We have the following immediate corollary. 

COROLLARY 3.5: A Baer cotorsion pair (G, T)  is a completely decomposable 

Baer cotorsion pair if and only if T satisfies Theorem 3.4. In particular, a by 

G singly cogenerated Baer cotorsion pair is a completely decomposable Baer 

cotorsion pair if and only if TC~(G) satisfies Theorem 3.4. 

We would like to note that in [St1, Theorem 4.6] the above theorem was 

extended by adding two more conditions in order to characterize Baer cotorsion 
pairs which are rational cotorsion pairs. 

First examples of indecomposable torsion-free abelian groups cogenerating a 

completely decomposable Baer cotorsion pair are provided by the so-called But- 

ler groups. Recall that a torsion-free abelian group G is called a B l -g roup  or 

Bu t l e r  group if BexL(G,T) = 0 for all torsion groups T where Bext consists 

of all balanced exact sequences; a short exact sequence 0 -+ A -+ B -~ G -+ 0 

(with G torsion-free) is called ba lanced exact  if, for all rank-1 groups R, the 

induced homomorphism Hom(R, B) ~ Hom(R,G) is surjective. Note that al- 

most completely decomposable groups (that means torsion-free abelian groups 

containing a completely decomposable subgroup of finite index) and finite rank 

Butler groups (that means pure subgroups of finite rank completely decompos- 

able groups) are Bl-groups. We have the following direct consequence of [StWa, 

Theorem 4.6]: 
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THEOREM 3.6: Let G be a Bl-group. Then TC~(G) = "flC~(~reTst(G) Rr). 
Hence the Baer cotorsion pair cogenerated by G is a completely decomposable 

Baer cotorsion pair and completely determined by tile typeset of G. 

As an immediate consequence we obtain 

COROLLARY 3.7: Every Baer cotorsion pair cogenerated by a class of Bl-groups 

is a completely decomposable Baer cotorsion pair. 

However, it was shown in [Stl] that  there are also non-Butler groups G 

having the property stated in Theorem 3.6 and that the class of abelian groups 

satisfying Theorem 3.6 is neither closed under extensions nor direct summands. 

We now turn our attention to countable groups and start with the finite rank 

case. In [Stl, Theorem 2.4] the following was proved. 

THEOREM 3.8: Let G be a torsion-free abelian group of finite rank. Then 

TC~(G) = TC~(R) for some rational group R. 

It was also proved in [Stl, Theorem 2.5] that  R in Theorem 3.8 can be chosen 

to be the outer type OT(G) of G (for definition see [Ar, Chapter 3]) and a result 

due to Warfield [Wa] allows one to determine the outer type, and hence TCz(G), 

explicitly for a torsion-free abelian group G of finite rank. Tile following theorem 

is now immediate. 

THEOREM 3.9: Every Baer cotorsion pair which is singly cogenerated by a 

torsion-free abelian group of finite rank is a rational Baer cotorsion pair. 

We would like to remark that  it was shown in [Stl] that  for almost all types 

R, the class TC~(R) can be realized as TCz(G) for an indecomposable, almost 

decomposable group of rank n for any natural number n. This proves that  the 

structure of the group G is less effected by TC~(G) than, for example, by G • 

even for finite rank abelian groups. Thus the Baer cotorsion pair cogenerated 

by G does not give much information about the group G itself. 

As a corollary we obtain a general version of Griffith's solution of the Baer 

problem for abelian groups of finite rank. 

COROLLARY 3.10: Let G be a torsion-free abelian group of finite rank and 

homogeneous of idempotent type R. Then G is completely decomposable if 

and only if the Baer cotorsion pairs cogenerated by G and R coincide, i.e. if  

7-c~(a)  = 7-C~(n). 

Proof: One implication is trivial, hence we assume TC~(G) = TC~(R). Since 

TC~(G) = TC~(OT(G)) we obtain, by Theorem 3.3, that the quasi-reduced 
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types of R and OT(G) coincide. However, R is idempotent and thus the types 

R and OT(G) are equal. Hence IT(G) = R = OT(G) and so the result follows 

by [Ar, Proposition 3.1.13]. | 

COROLLARY 3.11: Let G be a torsion-free abelian group of finite rank. Then 

G is free if and only if the Baer cotorsion pair cogenerated by G is the maximal 

one, i.e. TC~(G) = TC~(Z). 

Proof: Again one implication is trivial, hence we assume TC~:(G) = TC~:(Z). 

We want to apply Corollary 3.10. Therefore we need that G is homogeneous 

of type Z. But TC~(G) = TC~(Z) implies that OT(G) = Z and so G must be 

homogeneous of type X. | 

Let us note that Corollary 3.10 may fail if we do not assume that R is idem- 

potent (see [Stl, Lemma 2.10]), hence Gritfith's solution of the Baer problem 

cannot be generalized to homogeneous groups of non-idempotent type. 

THEOREM 3.12: Every Baer cotorsion pair which is cogenerated by a c/ass 

of countable torsion-free abelian groups is singly cogenerated by a completely 

decomposable group. 

Proof: By [StWa] Tg~(C) satsifies the conditions in Theorem 3.12 for any 

countable group C. Hence the theorem is immediate. | 

Let us remark that the above Theorem 3.12 cannot be strengthened to rational 

Baer cotorsion pairs, not even for completely decomposable Baer cotorsion pairs, 

as was shown in [StWa, Lemma 4.2]. 

We now focus on the main result of this section which states that under the 

assumption of V = L, every singly cogenerated Baer cotorsion pair is singly 

cogenerated by the direct sum of an almost free abelian group of cardinality 

R1 and a countable completely decomposable group. Since the class of abelian 

groups of cardinality R1 is a set of size at most 2 ~1 we also obtain that every 

Baer cotorsion pair is singly cogenerated by an abelian group of cardinality at 

most R1 in V = L. Moreover, large classes of Baer cotorsion pairs are already 

completely decomposable Baer cotorsion pairs (in GSdel's universe). 

In [Stl, Theorem 2.7] it was shown that condition Theorem 3.4 (iv) always 

holds under the assumption of V = L for any class Tg~:(G) with G a torsion-free 

abelian group. 



42 L. STRUNGMANN Isr. J. Math. 

THEOREM 3.13 (V = L): Let G be a torsion-free abelian group. I f P  is an 
infinite set of primes, then (~pepZ(p) E TC~(G) if and only if (~pcpTp E 

TC~(G) for all p-groups Tp E TC~(G). In particular, Theorem 3.40v) holds 

for Tear (G). 

Note that  Theorem 3.13 already implies that,  for a large class of torsion-free 

abelian groups G, there exists a completely decomposable group C such that 

TC~(G) = TC~(C) if we assume V = L. In fact, this is true for all torsion- 

free abelian groups G satisfying Theorem 3.4 (v). Thus, in Ghdel's universe, 

many singly cogenerated Baer cotorsion pairs are completely decomposable Baer 

cotorsion pairs. 

In [ShSt] Shelah and the author were finally able to prove the following results 

which give a full characterization of TC~z(G) for to,'sion-free abelian groups 

G. However, the proof was not absolutely correct and was corrected in [St4]. 

Therefore we state the main results of [ShSt] in the corrected version and give 

the main steps of the proof if it is different from the proof given in [ShSt]. 

For an infinite subset P C_ II we define Tp = ~pEP ~(P) where Z(p) denotes 

the cyclic group of order p. Recall that,  for an infinite set I,  an ideal  on I is a 

subset D of P( I )  such that  

(i) X, Y E D i m p l i e s X U Y E D ;  

(ii) X C _ Y C _ I w i t h Y E D i m p l i e s X E D ;  

(iii) 0 E D b u t I C D .  

For a torsion-free abelian group G it is not hard to see that  the set 

D = {P C_ l-I: Tp E TC(G)) 

forms an ideal on P(H) containing all finite subsets of H. In [ShSt] it was shown 

that  every such ideal may appear. It was even claimed that one can choose any 

ideal on P(I=I) where l=I = {pn: p C l-f, n E w}. This is not correct, but all the 

proofs remain correct if one replaces fI by H (see also [St4]). To avoid additional 

notation let us allow an ideal in P(H) to contain H itself. The following is [ShSt, 

Theorem 2.6]. 

THEOREM 3.14 (CH): Let I C_ P(II) be an ideal containing all finite subsets 

of H. Then there exists an Rl-free group G of cardinality R1 such that, for every 

P C_ II, Tp E TC(G) if and o n l y i f P  E I. 

As a corollary we obtain the following (corrected) result [ShSt, Corollary 3.2]. 
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THEOREM 3.15 (V = L): For every abelian torsion-freegroup G there exists an 

abelian group H of cardinality R1 such that TC~(G) = TC~z(H). Hence every 
Baer cotorsion pair is singly cogenerated by an abelian group of cardinality R1. 

Proof: Let G be given and put I = {P C_ 11: (~pepZ(p) �9 TC~(G)}. Then 

it is easy to see that I is an ideal on 7)(II) containing all finite subsets of II. 

Thus, by Theorem 3.14, there exists an Rl-free group G' of cardinality R1 such 

that, for every subset P C_ 1I, (~pepZ(p) �9 TC(G') if and only if P �9 I. Let 

Q = {p �9 II: ( ~ < ~  Z(p n) r TCzr(G)} and put H = G' | (~peQ Q(p)" It now 

follows easily as in [ShSt] that H is as required. 

Since all abelian groups of size R1 form a set of cardinality at most 2 al it is 

immediate that every Baer cotorsion pair is cogenerated by a set of torsion-free 

abelian groups and hence by a single group which again can be replaced by an 

abelian group of size ~ql. | 

However, this is not a result provable in ZFC. Already in the local case, it 

is undecidable in ZFC whether or not any singly cogenerated Baer cotorsion 

pair is a completely decomposable eotorsion pair (see [StWa, Lemma 3.10 and 

Proposition 3.11]). 

4. Singly genera ted  Baer  cotors ion pairs 

In this section we study singly generated Baer cotorsion pairs. In particular, 
we want to determine when a Baer cotorsion pair singly generated by a torsion 

group is a rational Baer cotorsion pair. Our first theorem gives a necessary 

condition which, at least in G6del's constructible universe, will be shown 

to be sufficient as well. Recall that zr(T) is the set of all primes for which 

tile torsion group T has a non-trivial p-component. We decompose 7r(T) into 

two subsets by putting 7rb(T ) = {p E 7r(T): Tp is bounded} and 7rub(T ) = 
{p �9 ~r(T): Tp is unbounded}. Finally, let rr0(T) = {p �9 11: Tp = 0}. 

THEOREM 4.1: Let T be a torsion group. If the Baer cotorsion pair singly 
generated by T is a rational Baer cotorsion pair cogenerated by R C_ Q, then 
T has only tinitely many non-trivial bounded primary components and R is 
idempotent. 

Proo~ Let T be given and assume that the Baer cotorsion pair singly generated 

by T is the rational Baer cotorsion pair cogenerated by R C_ Q and so, in 
particular, Ext(R, T) = 0. Thus 

YC~I(T) = .~C,rf(TC~(R)) and TCvr(JFC~I(T)) = TC~(R). 
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Assume that  7rb (T) is infinite. By Proposition 2.3, Q(P) =(1/pn :n E co} E ~T'Cff: f (T) 
for every prime p E rrb(T). Moreover, if ;~(R) = (rp)per[ then Proposition 2.3 

implies rp = 0 for almost all primes p E 7rb(T). Hence 

= {p e rp = 0} 

is infinite. Fix p E 7r~ (T) and an unbounded reduced p-group T'. Since p E 7r~ (T) 

it follows that  T' E TC~(R). On the other hand, however, Q(P) E ScOff(T) 

implies that  T' r TC~(FC~f(T)) = TC~(R) - -  a contradiction. Therefore 

rrb(T) is finite. 

It remains to show that  R is idempotent. Seeking a contradiction assume that  

R is not idempotent and hence a(R) = {p EII :  0 < rp < oc} is infinite. Then 

Tp must be trivial or divisible for almost all primes p E a(R) by Proposition 

2.3. As above, there exists a prime p such that Q(P) E ScOff(T) and T ~ E 

TC~(R) for some unbounded reduced p-group T ~ yielding a contradiction to 

TC~(FC~[(T)) = TC~(R). This completes the proof. I 

An interesting, still open question is the following 

QUESTION 4.2: If  T has in~nitely many non-trivial bounded primary compo- 
nents, can the Baer cotorsion pair generated by T be a completely decomposable 
Baer cotorsion pair? 

In order to prove some sort of converse to Theorem 4.1 we need the follow- 

ing immediate consequence of [St2, Theorem 3.9]. For an abelian group G let 

Subgr(G) = {U E P.lb: U _C ( ~  G for some cardinal ~}. 

THEOREM 4.3 (V = L): Let T be a torsion group. Then there exists an idem- 
potent rational group R such that 5cC~t(T) = Subgr(R) if" and only if  T has 

only l~nitely many non-trivial bounded primary components. In this case, the 
Baer cotorsion pair singly generated by T equals the rational Baer cotorsion 

pair singly cogenerated by R. 

Proof: In [St2, Theorem 3.9] it was shown that  under the assumption of V = L 

there exists an idempotent rational group R such that  ~ x  R is A-universal for 

T for any cardinal ,~. Since A-universal for T means that  for any cardinal A, 

any torsion-free abelian group G of rank less than or equal to ,~ which satis- 

fies Ext(G,T)  = 0 can be embedded into (~x R, it follows immediately that 

~-C~:f(T) = Subgr(R). For finite A this was even proved to be an if and only if 

statement in ZFC in [St2, Theorem 3.3]. Hence the claim follows. I 

Using Theorem 4.1 we obtain 
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COROLLARY 4.4 (V = L): Let T be a torsion group. The Baer cotorsion 

pair singly generated by T is a rational Baer cotorsion pair (generated by an 

idempotent rational group) if and only if T has only finitely many non-trivial 

bounded primary components. 

5. The  lat t ice of  Baer  cotors ion pairs 

In this section we consider the lattice of Baer cotorsion pairs. From what we have 

proved in the last sections it will turn out that in G6del's universe the lattice of 

all Baer eotorsion pairs is almost in bijection with the lattice of ideals of 7)(1[) 

containing all finite subsets of H. Thus a generalization of [GhShWa, Theorem 

3.1] is not possible. However, we shall give some results about embedding posets 

in the lattice of rational and completely decomposable Baer cotorsion pairs 

respectively. Moreover, we try to characterize those ideals in 7)(H) which come 

from completely decomposable Baer cotorsion pairs. 

We first consider the lattice (s <_) of all rational Baer cotorsion pairs. In 

[GhShWa, Theorem 3.1] it was shown that any poset can be embedded into the 

lattice of all cotorsion pairs, in fact even into the lattice of all cotorsion pairs 

which are singly cogenerated by a torsion-free abelian group. It is our aim to 

prove a similar result for (rational, completely decomposable) Baer cotorsion 

pairs. The first proposition is an analogue to [GhShWa, Theorem 1.11]. Recall 

that a rational group R C_ Q is called quas i - reduced  if XpR(1) E {0, 1, co} for 

all primes p except for finitely many. Naturally, the quasi-reduced types form a 

lattice with tile natural ordering ~_ which we will denote by (type qr, ~_). 

PROPOSITION 5.1: The lattice of quasi-reduced types (Typeqr,~) i8 anti- 
isomorphic to the lattice o[ rational Baer cotorsion pairs via the mapping 

typeqr(R) ~-~ (YC~f(TC~(R)),TC~(R)). 

Proof: The proof follows immediately from Theorem 3.3. Clearly, the mapping 

type qr (R) ~ (grC~i (TC~r (R)), TC~ (R)) is order-reversing and a monomorphism 

by Theorem 3.3. To show surjectivity, let R be any type and S its quasi-reduced 

type. Again Theorem 3.3 shows that TC~(R) = TC~(S) and hence the two Baer 

cotorsion pairs singly cogenerated by R and S coincide. | 

THEOREM 5.2: Let I be a countable set. Then the power set 7 -) = T)(I) can be 

embedded into the lattice (s _<) of rational Baer cotorsion pairs. 

Proof'. We identify I with the set of natural primes l-i, hence it is enough 

to show that 7)(1[) can be embedded into (s <_). Let X E 7)(II) and put 
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Rx  = Q(x). Then the mapping (7)(II), _C) -+ (.~r~t, <_) sending X onto Rx is 

an order-reversing embedding of (7)(II), _C) into (~r~t, <_). Since the mapping 

(P, C) --~ (P, C_) (X ~ I \X )  is an order-reversing isomorphism we are done. 

I 

By results due to Baer (see [Ba2] and Eda (see [Ed]) there exists an antichain 

of length 2 s~ in (.~at, <_) as well as a descending chain of uncountable length. 

However, the exact length of a maximal descending chain in (s _<) depends 

on the underlying set theory. 

We now study the lattice (s <_) of all completely decomposable Baer 

cotorsion pairs. 

THEOREM 5.3: Let I be a set of cardinality less than or equal to 2 ~~ Then the 
power set (79(I), C) can be embedded into the lattice (2cd , <~) of all completely 
decomposable Baer cotorsion pairs. 

Proos We divide the set of natural primes II into 2 ~~ almost disjoint subsets 

Hi (i E 2~~ Put  M = {Hi: i E 2~~ Without loss of generality we may 

assume that  III = 2 e~ and we now identify I with M and it is obviously enough 

to embed the power set P ( M )  into (~cd,_<)- Since the mapping (P (M) ,C)  

--~ (P(M),  C) (X ~ I \X )  is an order-reversing isomorphism, we are done 

if we can find an order-reversing monomorphism of (P(M),  _C) into (Ecd, <_). 
For P E M we let FIR -= (1/p : p C PI C_ Q and for X E 7)(M) we put 

Cx = ~PEX Rp. Then each Cx is completely decomposable and the typeset 

of Cx  is the meet closure of the types Rp (P E X). Clearly, if X C_ Y, 

then Cx C_ Cy and hence TC$(Cy) C_ TC~(Cx). Conversely, assume that  

TC~(Cy) C TC~(Cx) for some X , Y  E P(M)  and assume that  X ~ Y. Then 

there exists P E X \ Y .  Put T = ~pepZ(p).  Then T r TCz(Cx)  since 

Xp Rp (1) ~ 0 for all p E P. Now choose Q E Y; then Q and P are almost disjoint, 

hence T E TC~(RQ) and therefore T E TC~z(Cy). Thus TC~(Cy) ~_ TC~(Cx) 
- -  a contradiction. Thus the mapping X ~ (~C~f(TCz(Cx)), TCi(Cx)) is an 

order-reversing monomorphism from (T'(M), C) into (~cg, <). I 

COROLLARY 5.4: Any poset (X, <) of cardinality less than or equal to 2 ~~ can 
be embedded into the lattice of all completely decomposable Baer cotorsion 
pairs. 

Proof" It is known that  any poset (X, <) of size A can be embedded into a 

power set of cardinality 2 ~, hence the result follows from Theorem 5.3. I 
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Note that two completely decomposable groups with the same typeset nec- 

essarily have the same TC~-class, hence cogenerate the same Baer cotorsion 

pair. Since there are only 2 s~ types and hence 22a~ possible typesets, it follows 

that Theorem 5.3 is as best as possible. Moreover, since any ordinal which is 

embeddable into the power set of # has length at most #, we cannot expect to 

find embeddings of all posets of cardinality 22~~ into the lattice of all completely 

decomposable Baer cotorsion pairs in general. 

Finally, we turn to the lattice of all Baer cotorsion pairs assuming V = L. 

Let 3 be the lattice of ideals of P(II) containing all finite subsets of 7)(11). We 

define on 3 x 7)(H) a partial order by letting (I,P) ~ (I',P') if and only if 
I C 11 and P'  C P. 

THEOREM 5.5 (V = L): There is all order-reversing bijection a between the 

lattice of all Baer cotorsion pairs and 3 x 7)(H). 

Proof: Let (G, T) be a Baer cotorsion pair and put 

I = {P C 7)(n): ~ Z(R) e '-l-} and Q = {p e Yh ~[~ Z(p n) ~. T}. 
pCP n<w 

Then it is immediate that I E 3 and thus the mapping (6, T) ~ (I, Q) is an 

order-reversing function from the lattice of all Baer cotorsion pairs to 3 x 7)(H). 

By Theorem 3.14 and Theorem 3.15 this mapping is a bijection. II 

The lattice 3 is even more complicated than the lattice of types and hence 

very likely its structure depends on the underlying set theory. It seems hopeless 

to characterize all partially ordered sets which can be embedded into 3. How- 

ever, we shall give some results on the ideals in 3 that come from a completely 

decomposable Baer cotorsion pair. 

Since the ideals in 3 contain all finite subsets of H it is reasonable to look at 

the Boolean algebra (P(H)/Fin(II), <) where Fin(K) denotes the set of all finite 

subsets of II. Here [P] < [P'] is satisfied for two cosets [P], [P'] e P(rI)/Fin(ll) 
if and only if P'\P is finite. Note that 7)(H)/Fin(II) is an atomless Boolean al- 

gebra which satisfies the strong countable separation property by [Kol, Example 

5.28]. Thus [Kol, Proposition 5.29] implies that P(H)/Fin(H) is wl-universal, 

which means that every Boolean algebra of size at most R1 is embeddable into 

~(n)/Fin(1]). 
Let p: 7)(II) --4 7)(H)/Fin(H) be the canonical epimorphism. Then p in- 

duces an order-preserving bijection /5 between 3 and the lattice of ideals in 

P(H)/Fin(II) given by I ~-~ {p(P): P E I} = [ (see [Kol, Exercise 6, page 84]). 
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PROPOSITION 5.6: A Baer cotorsion pair is a completely decomposable Baer 

cotorsion pair if and only if the corresponding ideal i satisfies the following 

condition: 

for every P q~ [ there exists -Pw <_ P such that 

P" ~ I for every 0 ~ P" <_ P'. 

Proof: The proof follows fl'om Theorem 3.4. By Theorem 3.4 condition (v) 

the ideal I corresponds to a completely decomposable Baer cotorsion pair if and 

only if for every P r I there exists an infinite subset P '  C P such that P "  r I 

for all infinite subsets P "  C_ P ' .  Passing to the Boolean algebra P(I'I)/Fin(II) 

proves the proposition. II 

We have an easy lemma. 

LEMMA 5.7: If.[ is an ideal on P(II) /Fin(II)  which is singly generated, then the 

corresponding Baer cotorsion pair is a completely decomposable Baer cotorsion 

pair. 

Proof." All one has to do is to check the condition from Proposition 5.6 which 

is easily established. II 

So far there is no complete characterization available for the ideals in 

P(II) /Fin(II) .  Moreover, the lattice structure of the ideals of P(H)/Fin(II )  

is not known. Thus, we pose the following open question: 

QUESTION 5.8: What posets can be embedded into the lattice of all Baer 

cotorsion pairs? What ideals [ correspond to completely decomposable Baer 

cotorsion pairs ? Characterize the ideal lattice of P(II) / Fin(l'I). 

[tr] 

[Ball 
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